
A FV Scheme for Maxwell’s equations

Convergence Analysis on unstructured meshes

Stephanie Lohrengel* — Malika Remaki**

*Laboratoire J.A. Dieudonné (UMR CNRS 6621),
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ABSTRACT. In [10], Remaki developped a new Finite Volume Scheme for the resolu-

tion of the heterogeneous Maxwell equations in three dimensions. The scheme is based

on a leapfrog time discretization and involves a centered flux formula for discretiza-

tion in space. Numerical tests have shown the performance of the method, namely on

unstructured grids. In this paper, we will present some recent convergence results in

L2 in the case of unstructured grids which satisfy an appropriate “aspect condition”.

This condition will be dicussed and illustrated by some numerical results.
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1. Introduction

In [10], M. Remaki introduced a new Finite Volume Scheme for the resolu-
tion of the heterogeneous time-dependent Maxwell equations in three dimen-
sions. The scheme is based on a leapfrog time discretization and involves a
centered flux formula for discretization in space. From a numerical point of
view, it gathers many advantages. It turns out to be non diffusive and is thus
well adapted to the simulation of propagation phenomena. The analysis of the
scheme has been carried out on cartesian grids in [10]. It has been proved that
the scheme is stable (under an appropriate CFL condition) and second-order
accurate in space and in time. Moreover, the dispersion of the scheme has
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been shown to be of second order (and thus of the same order as the classical
FDTD-scheme of Yee [11]).

Finite volume methods have been studied widely in the context of nonlinear
scalar conservation laws [6, 7, 3]. In the general case of nonlinear systems,
few results are known. Kröner et al. proved in [8] that the L2

loc-limit of a
convergent sequence of Finite Volume approximations may be identified with
a weak solution of the problem. In [2], a FV Scheme for symetric hyperbolic
systems is analyzed and the error in L2 is shown to be of order 1/2 with respect
to the mesh size.

In electromagnetism, finite volume methods became popular in the early
’90ies. Those involving primal and dual grids suffer essentially from the lack of
three dimensional mesh generators. Other methods are based on higher-order-
upwind discretization in space [1, 5], known as MUSCL schemes. The main
drawback of these methods is its numerical diffusion which does affect seriously
the accuracy of the solution in long-run computations.

Finite volume schemes in electromagnetism derive from the Maxwell equa-
tions written in conservative form as a linear hyperbolic system. However, few
theoretic results are known, especially for convergence. Recently, Piperno et al.
[4] investigated stability results for the scheme in the case of the heterogeneous
Maxwell equations with metallic and absorbing boundary conditions.

2. Setting of the electromagnetic problem

The electromagnetic problem we are interested in, is the following: given
two incident fields E0 and H0, we are looking for (H,E) satisfying{

µ∂tH + curl (E) = 0 in R+ × R3

ε∂tE− curl (H) = 0 in R+ × R3 , (1)

where ε(x) and µ(x) are piecewise constant functions representing respectively
the electric permittivity and magnetic permeability of the medium. We assume
that there are constants α > 0 and β > 0 such that

α ≤ ε(x), µ(x) ≤ β for almost every x ∈ R3. (2)

A functional frame for problem (1) has been given in [9].

3. Discretization

In this section we introduce the discrete formulation of problem (1) with
the help of a discrete curl operator. We will show that the scheme actually is
a Finite Volume Scheme with a centered numerical flux.
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For a given mesh T = (Tj)j∈Z of R3, made up by a finite number of con-
nected polyhedral finite volumes, we introduce a discrete curl operator acting
on sequences (Uj)j∈Z) of R3Z where Uj = (Uj1,Uj2,Uj3):

∀j ∈ Z curlh(U)j = − 1

2|Tj |
∑
l∈Nj

Ul × njl,

where |Tj | denotes the area of the jth cell, Nj is the set of neighbours of Tj
and njl is a vector of length |Fjl| in the direction of the outer unit normal on
the common face Fjl of Tj and Tl. For finite sequences U and V, it may be
shown that

(curlh(U),V)h = (U, curlh(V))h, (3)

where
(U,V)h =

∑
j∈Z
|Tj |Uj ·Vj

denotes the discrete scalar product.

The scheme that we are going to study is then defined as follows. Let H−1/2

and E0 be an approximation of the initial data, we define Hn+1/2 and En+1

by the recursive formula:{
H

n+1/2
j = H

n−1/2
j − ∆tµ−1

j curlh(En)j
En+1

j = En
j + ∆tε−1

j curlh(Hn+1/2)j
(4)

Let us briefly describe how the scheme (4) may be seen as a Finite Vol-
ume Scheme with a centered flux formula. To this end, we write the Maxwell
equation in conservative form,

∂Q

∂t
+ div IF(Q) = 0, Q(·, 0) = Q0 (5)

where Q is given by Q = t(B,D) = t(µH, εE) and the definition of IF =
(F1,F2,F3) follows from (1).

In order to perform discretization in space, we choose the mesh elements
as control volumes and integrate (5) over each cell Tj . The semi-discretized
formulation then reads as follows,

∂tQj +
1

|Tj |
∑
l∈Nj

Φjl(Qj ,Ql) = 0, (6)

where Φjl = Φjl(Qj ,Ql) denotes the numerical flux across the interface Fjl.
If we define the function Φjl as the centered flux,

Φjl(U,V) =
1

2
(IF(U) + IF(V)) · njl, (7)
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it may be easily seen that

Φjl = t(Φjl,B,Φjl,D),

with

1

|Tj |
∑
l∈Nj

t (Φjl,B(Dj ,Dl),Φjl,D(Bj ,Bl)) = t
(
curlh(ε−1D)j ,− curlh(µ−1B)j

)
.

Using an explicit second order leapfrog scheme for time discretization thus
yields (4).

4. Stability

We aim to prove that the L2-norms of the approximated fields are uniformly
bounded with respect to the mesh parameter h and the time step n. This does
recover partially the results in [4] where stability is proven for the same scheme
on a bounded domain with respect to a so-called “Leapfrog”-energy which
defines a positive quadratic form of all the unknowns under an appropriate
CFL condition.

In order to get stability with respect to the L2-norm, we introduce the
L2-like discrete electromagnetic energy

En = (εEn,En)h + (µHn−1/2,Hn−1/2)h. (8)

The CFL condition depends on the regularity of the mesh and the electromag-
netic coefficients ε and µ. More precisely, let Th be a grid of R3. We assume
that any cell of the grid is an open, convex polyhedron with K faces. Further,
let C > 0 and c > 0 be two constants such that

∀j, l ∈ J c h2 ≤ |Fjl| ≤ C h2,
∀j ∈ J c h3 ≤ |Tj | ≤ C h3.

(9)

Let the time step ∆t be chosen such that

1

α

KC

4c

∆t

h
≤ r < 1, (10)

where α > 0 is given by (2). Then

En ≤ 1 + r

1− r
E0 (11)

for all n ∈ N.
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5. Convergence Analysis on unstructured grids

The stability result of the previous section implies that a subsequence of
(Hh,Eh)h>0 converges weakly in L2. The main result of this paper is the
identification of the weak limit. It turns out that, in general, curlh yields a
nonconsistent discretization of the continuous curl operator. However, we are
able to prove that the weak limit is a solution of (1) in the distributional sense
if the meshes satisfy the following additional condition:

For any bounded domain Ω ⊂ R3, we assume that

h
∑

Fjl∩Ω6=∅

|ωj − 2σjl + ωl|2 = o(1), (12)

where ωj denotes the mass center of the jth cell and σjl is the mass center of
the common face of Tj and Tl.

Theorem 1 Let Th be a family of unstructured grids satisfying the regularity
assumptions (9) and condition (12).

Let ∆t be chosen such that the CFL condition (10) is satisfied.

Then, the sequence (Hh,Eh)h>0 given by scheme (4) from smooth initial
data E0 and H0, converges weakly in L2(R+,R3)3 to a solution (H,E) of the
Maxwell system (1) in the distributional sense.

Let us sketch the main ideas of the proof. With a vector valued test function
ϕ of C∞0 (R+×R3)3 we associate the sequence of R3Z defined by ϕq

j = ϕ(tq, ωj)
where tq = q∆t for q ≥ 0. We deduce from the definition of the scheme that∑

n

∑
j

|Tj |εj(En+1
j −En

j ) · ϕn
j = ∆t

∑
n

∑
j

|Tj | curlh(Hn+1/2)j · ϕn
j . (13)

Now, the left hand side of the above expression does correspond to the weak
derivative in time of εEh,

−
∫
R+×R3

εEh · ∂tϕdx dt−
∫
R3

εE0ϕ(·, 0)dx

up to an additional correction term of order O(h). To prove this, we use similar
techniques as in [8].

It remains to show that the right hand side of (13) yields the weak curl of
Eh. The crucial point in the proof is the following weak consistency of the
discrete curl operator which is true under the additional condition (12) on the
meshes:
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Proposition 1 Let (Th) be a family of unstructured grids satisfying (9) and
(12). Let ϕh ∈ R3Z the sequence defined by ϕh

j = ϕ(ωj) for a given test function

ϕ ∈ C∞0 (R3). Then

(curlh(U), ϕh)h = (U, (curlϕ)h)h + o(1) (14)

for any finite sequence U = (Uj)j∈Z ∈ R3Z.

Let us finish with some remarks.

– The limit field (H,E) is of class L2. Due to the linearity of the scheme
and condition (12), it may be shown, however, that

(H,E) ∈ C0([0, T ];L2(R3))6.

– In §4, the discrete energy was shown to be bounded by the energy at
the initial state up to a multiplicative factor depending on the CFL condition.
Under the condition (12), we are able to prove that the discrete energy is
conserved at the limit provided that the initial data are smooth:

En = E0 +O(h). (15)

– The above-mentioned results finally imply the convergence of (‖Eh‖20 +
‖Hh‖20)1/2 to the L2-norm of the limit field. Hence, the convergence in Theorem
1 is strong.

6. Numerical results in 2D

The numerical performance of the method has been illustrated in [10] with
several examples. For instance, a comparison of the centered scheme (4) with
a third order accurate MUSCL finite volume method clearly showed that (4) is
not diffusive whereas the MUSCL method yields a bad approximation in a long
time run. Figure ?? below represents the scattering of a monochromatic wave
across the dielectrical layer of a coated airfoil (NACA0012). The simulation has
been done with an unstructured grid corresponding to 15 points per wavelength,
and we notice that no spurious oscillation occurs at the interfaces.

7. About the “aspect”condition

Let us finish with some remarks on condition (12). First, notice that for an
arbitrary mesh, |ωj − 2σjl +ωl| is of order O(h) such that the left hand side of
(12) is uniformly bounded with respect to h. It evaluates to 0 on a structured
grid. Condition (12) thus implies a certain homogeneity of the mesh. However,
up to O(h−2) cell interfaces can violate (12) which allows, for instance, local
mesh refinement near the border of the computational domain.
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Condition (12) seems to be rather strong. The question is whether it is
really necessary. Numerical tests on arbitrary generated meshes like the one
in §6 have shown very satisfying results. Some meshes however, for which
it may easily be seen that condition (12) does not hold, do not give good
approximations of the electromagnetic field.

In order to illustrate these phenomena, we give below some numerical results
in one dimension of space. Starting from sequences u0, v1/2 ∈ RZ we define
un, vn+1/2 by {

vn+1/2 − vn−1/2 = ∆t Dh(un)
un+1 − un = ∆t Dh(vn+1/2),

(16)

where, similarly to the discrete curl operator, the discrete differentiating oper-
ator Dh, acting on sequences of RZ, is defined by

Dh(u)i =
ui+1 − ui−1

2hi

on a partition of R into cells Ci of (variable) size hi > 0. In 1D, condition (12)
reads as follows

∀[a, b] ⊂ R
∑

i:xi∈[a,b]

hi|rhi |2 = o(1), (17)

where

rhi =
hi+1

hi
+
hi−1

hi
− 2.

Let us define the “variation ”of a grid of N cells by

var(h) =
N∑
i=1

hi|rhi |2.

We tested the method on three grids with 200 cells, smooth initial data and
periodic boundary conditions. Figures 1 and 2 represent the initial condition
(solid line) and the approximation of u at t = 0.6 (dashed line) for different
grids. The left picture of Figure 1 does correspond to a regular partition of
constant path h = 1/N . Condition (17) is clearly satisfied, since var(h) = 0.
Next, we applied the method with an alternating sequence of cell sizes, i.e.
h2i−1 = h and h2i = 2h, ∀i ∈ N∗. The variation of the grid is evaluated to
var(h) = 2 and does not depend on the number of cells. The right picture of
Figure 1 clearly shows that the method does not converge. The approximation
seems to split into two functions with different amplitude. The two pictures
of Figure 2 correspond to unstructured grids that have been generated using a
random number generator. The grid with the smaller variation (var(h) = 0.016)
on the right clearly yields a better approximation.
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Figure 1. Approximation of u with a regular and an alternating mesh.
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Figure 2. Approximation of u with two random meshes of different variation.
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volumes finis explicite en temps pour les systèmes hyperboliques linéaires
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